Molecular

分子イメージングの最新動向 П

Imaging 2014

3. 光イメージングの最新動向 1) バイオイメージングの現状と展望

今村 健志*1, 2, 3, 4/ 疋田 温彦*1, 2, 4/大嶋 佑介*1, 2, 3, 4 飯村 忠浩*2,3,4

- * 1 愛媛大学大学院医学系研究科分子病態医学講座
- *2 愛媛大学プロテオサイエンスセンターバイオイメージング部門
- *3 愛媛大学医学部附属病院先端医療創生センターバイオイメージング部門
- * 4 科学技術振興機構戦略的創造研究推進事業

最近のライフサイエンス研究分野の動向 として、細胞、動物やヒトが生きたままで、 タンパク質などの生体分子の動態や機能を 解析することが強く求められるようになっ てきた。生命現象をより深く理解し、病気 の原因を明らかにし、治療法を研究するた めには、タンパク質などの生体分子の体内 での時空間的動態や機能を解析する必要 があり、これまでの生化学実験技術や分子 生物学実験技術に加え、動物が生きたまま 経時的に細胞や分子の動態を解析できるバ イオイメージング技術が必要である。いま やバイオイメージングは、 ライフサイエンス 研究分野に必要不可欠な技術になっている。

本稿では、バイオイメージングの現状と 展望について、特に生体蛍光イメージン グを中心に、われわれのデータを紹介しな がら問題点を洗い出し、将来展望につい て考察する。

さまざまな バイオイメージング技術 の発達と応用

近年の分子生物学の飛躍的な進歩, 特に遺伝子改変マウス作製技術、革新 的シーケンス技術や網羅的オミクス技術 の台頭により、さまざまな分子や細胞の 機能やその役割が明らかにされつつある。 しかし、それらの分子や細胞が、生体の 中でどのようにダイナミックに機能して いるかを明らかにすることは、いまだ困 難である。その問題を解決するひとつの 方法として、細胞が生きたまま細胞内の 分子を. また動物が生きたまま生体内の 細胞や分子を画像化して、その動態や 機能を見ながら研究するバイオイメージ ング(分子イメージングとも呼ばれる) 技術が注目されている1),2)。

すでに、放射線を利用したコンピュー 夕断層撮影 (computed tomography: CT). 放射性同位元素を用いた陽電子 放射断層撮像法 (positron emission tomography: PET) から核磁気共鳴画 像 (magnetic resonance imaging: MRI) まで、ヒトが生きたままで外部か ら体内の細胞や生体分子をイメージング できるさまざまなバイオイメージング技 術が臨床医学の分野で活用され. がん から生活習慣病まで幅広い疾患の診断 に威力を発揮している^{1), 2)}。さらに、こ れら臨床現場で活躍している生体用バ イオイメージング機器は、その機能が拡 張するとともに、お互いを組み合わせた マルチモダリティ化も進んでいる。また、 機器の小型化が進み、小動物を対象と した解析が可能となり、バイオイメージ ング機器を用いた解析は、さまざまな疾 患の病態解明, 創薬・診断法開発など の先端基礎研究への応用研究が急速に 進んでいる。

生体蛍光イメージング 技術の進歩

バイオイメージングの中で、蛍光タン

パク質や蛍光有機小分子を用いた生体 蛍光イメージングは、空間分解能や時間 分解能に優れ、高感度でさまざまな生命 現象をイメージングできる分子プローブ を作製しやすく. さらに簡便で経済性に も優れていることから、より包括的に生 体を解析するための新しいテクノロジー として期待されている^{3),4)}。特に, 蛍光 タンパク質のこの十数年の技術の進歩と 応用は著しく、その結果、2008年のノー ベル化学賞が緑色蛍光タンパク質(green fluorescent protein: GFP) を発見した 下村 脩博士に授与された。

蛍光イメージングの特徴の1つは、デ ザインに工夫を加えて新たな蛍光有機小 分子を開発し、または遺伝子工学を活 用して蛍光タンパク質の発現制御や構造・ 機能に工夫を凝らすことで、さまざまな 生命現象を光に転換する分子プローブ を作製することである。実際、新規蛍光 有機小分子や遺伝子改変した蛍光タン パク質を用いて、細胞内の分子動態や 情報伝達系をイメージングする試みが. これまでどんどん広がってきた。

蛍光有機小分子を用いた分子プロー ブの開発では、細胞内のカルシウムや一 酸化窒素(NO)の濃度、pHの変化から 細胞死まで、さまざまな生命現象のイメー ジングが可能になってきた。これまでに、 下村博士と同時にノーベル化学賞を受 賞したロジャー・チェン (Roger Tsien) 博士らが1991年、環状アデノシンーリ ン酸 (cAMP) イメージングを報告し⁵⁾,